Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 9(10): 2737-2748, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33017534

RESUMO

Genome engineering of microorganisms has become a standard in microbial biotechnologies. Several efficient tools are available for the genetic manipulation of model bacteria such as Escherichia coli and Bacillus subtilis, or the yeast Saccharomyces cerevisiae. Difficulties arise when transferring these tools to nonmodel organisms. Synthetic biology strategies relying on genome transplantation (GT) aim at using yeast cells for engineering bacterial genomes cloned as artificial chromosomes. However, these strategies remain unsuccessful for many bacteria, including Mycoplasma pneumoniae (MPN), a human pathogen infecting the respiratory tract that has been extensively studied as a model for systems biology of simple unicellular organisms. Here, we have designed a novel strategy for genome engineering based on the recombinase-assisted genomic engineering (RAGE) technology for editing the MPN genome. Using this strategy, we have introduced a 15 kbp fragment at a specific locus of the MPN genome and replaced 38 kbp from its genome by engineered versions modified either in yeast or in E. coli. A strain harboring a synthetic version of this fragment cleared of 13 nonessential genes could also be built and propagated in vitro. These strains were depleted of known virulence factors aiming at creating an avirulent chassis for SynBio applications. Such a chassis and technology are a step forward to build vaccines or deliver therapeutic compounds in the lungs to prevent or cure respiratory diseases in humans.


Assuntos
Clonagem Molecular/métodos , Edição de Genes/métodos , Engenharia Genética/métodos , Genoma Bacteriano , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/patogenicidade , Cromossomos Artificiais/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Humanos , Recombinases/genética , Saccharomyces cerevisiae/genética , Biologia Sintética/métodos , Virulência/genética , Fatores de Virulência
2.
ACS Synth Biol ; 8(11): 2547-2557, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31663334

RESUMO

Over the past decade, a new strategy was developed to bypass the difficulties to genetically engineer some microbial species by transferring (or "cloning") their genome into another organism that is amenable to efficient genetic modifications and therefore acts as a living workbench. As such, the yeast Saccharomyces cerevisiae has been used to clone and engineer genomes from viruses, bacteria, and algae. The cloning step requires the insertion of yeast genetic elements in the genome of interest, in order to drive its replication and maintenance as an artificial chromosome in the host cell. Current methods used to introduce these genetic elements are still unsatisfactory, due either to their random nature (transposon) or the requirement for unique restriction sites at specific positions (TAR cloning). Here we describe the CReasPy-cloning, a new method that combines both the ability of Cas9 to cleave DNA at a user-specified locus and the yeast's highly efficient homologous recombination to simultaneously clone and engineer a bacterial chromosome in yeast. Using the 0.816 Mbp genome of Mycoplasma pneumoniae as a proof of concept, we demonstrate that our method can be used to introduce the yeast genetic element at any location in the bacterial chromosome while simultaneously deleting various genes or group of genes. We also show that CReasPy-cloning can be used to edit up to three independent genomic loci at the same time with an efficiency high enough to warrant the screening of a small (<50) number of clones, allowing for significantly shortened genome engineering cycle times.


Assuntos
Sistemas CRISPR-Cas , Clonagem Molecular/métodos , Edição de Genes/métodos , Engenharia Genética/métodos , Saccharomyces cerevisiae/genética , Proteína 9 Associada à CRISPR/metabolismo , Cromossomos Bacterianos/genética , Clivagem do DNA , DNA Bacteriano/genética , Loci Gênicos , Genoma Bacteriano , Mycoplasma pneumoniae/genética , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
3.
Microbiology (Reading) ; 164(11): 1372-1382, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30252643

RESUMO

Bacteria of the genus Mycoplasma have recently attracted considerable interest as model organisms in synthetic and systems biology. In particular, Mycoplasma pneumoniae is one of the most intensively studied organisms in the field of systems biology. However, the genetic manipulation of these bacteria is often difficult due to the lack of efficient genetic systems and some intrinsic peculiarities such as an aberrant genetic code. One major disadvantage in working with M. pneumoniae is the lack of replicating plasmids that can be used for the complementation of mutants and the expression of proteins. In this study, we have analysed the genomic region around the gene encoding the replication initiation protein, DnaA, and detected putative binding sites for DnaA (DnaA boxes) that are, however, less conserved than in other bacteria. The construction of several plasmids encompassing this region allowed the selection of plasmid pGP2756 that is stably inherited and that can be used for genetic experiments, as shown by the complementation assays with the glpQ gene encoding the glycerophosphoryl diester phosphodiesterase. Plasmid-borne complementation of the glpQ mutant restored the formation of hydrogen peroxide when bacteria were cultivated in the presence of glycerol phosphocholine. Interestingly, the replicating plasmid can also be used in the close relative, Mycoplasma genitalium but not in more distantly related members of the genus Mycoplasma. Thus, plasmid pGP2756 is a valuable tool for the genetic analysis of M. pneumoniae and M. genitalium.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Peróxido de Hidrogênio/metabolismo , Mycoplasma pneumoniae/genética , Complexo de Reconhecimento de Origem/genética , Plasmídeos/genética , Sítios de Ligação/genética , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Mycoplasma pneumoniae/metabolismo , Diester Fosfórico Hidrolases/genética , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...